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All of Trump’s Words: Linguistic Change in Online Political Discourse

Alberto Melgoza and Chet Gutwein, UC Berkeley

Abstract

President Trump has used buzzwords and
provocative text to “weaponize” his lan-
guage. The press and social media re-
sponse, whether in support or opposi-
tion, has used his language and repeat-
edly echoed his words in print which has
given him an incredibly powerful market-
ing tool. We have utilized Snapshot Lan-
guage Models (SLM) to analyze the im-
pact of Trump’s use of language in on-
line communities. Our findings demon-
strate that President Trump has impacted
our communication patterns in a big way.

1 Introduction

American democracy is currently undergoing the
biggest test most of have seen in our lifetimes.
This is not in small measure due to the current
Presidents sustained disregard for truth and dis-
dain towards people and institutions that enable
our democracy to function, such as the free press.

But how does he plan to get away with it?
Professor emeritus of linguistics at UC Berkeley
Lakoff (2016) explains, that Trump, as the master
salesman, has turned words into weapons to ma-
nipulate media and public opinion in order to sell
whatever narrative serves his goals, regardless of
what is true or best for the American people. Pro-
fessor Lakoff argues that “By faithfully transmit-
ting Trumps words and ideas, the press helps him
to attack, and thereby control, the press itself”. We
believe that, although this argument makes intu-
itive sense, having quantifiable evidence support-
ing it would make it that much stronger.

From previous work done with Snapshot
Language Models (SLMs) (Danescu-Niculescu-
Mizil et al, 2013), we understand that there is
a somewhat predictable pattern that users in an

online discussion forum typically follow that can
be tracked by linguistic change, which Danescu-
Niculescu-Mizil et al (2013), defines as: “linguis-
tic innovation originating in a sub-group that be-
comes accepted as the norm through a process of
conforming.” We study how much of this linguis-
tic change can be correlated to and impacted by
the President’s influence.

Automated content on the internet and various
social media outlets has become seemingly grow-
ing in presence in online discourse. Applications
for bots range from advertising products to influ-
encing voters in elections. The latter is considered
by the most as the biggest threat that bots pose,
and there is evidence that our language patterns
through online mediums are increasingly affected
by polluted content generated by bots. Our intent
was to focus some analysis on bot interaction with
language patterns, but instead we are able to point
out some evidence that may motivate continued
study.

Our Approach. We have chosen the Reddit
r/politics subreddit (discussion forum) as the plat-
form for our analysis. We developed SLMs for the
time period covering January 2015 through De-
cember 2017 (2016 Election) and January 2011
through December 2013 (2012 Election). We
tested each SLM’s proximity to Trump’s language
using a set of posts from 2018 that explicitly con-
tain Trumps weapon words such as “fake news”,
“witch hunt”, “deep state”. We made direct com-
parisons between the 2016 Election SLM results
and the 2012 Election SLM results.

We made a few departures from the Danescu-
Niculescu-Mizil et al (2013) SLM model struc-
ture in order to suit the focus of this study. Pri-
mary differences with our SLMs are that each
SLM is a tri-gram model and we used Kneser-
Ney smoothing (Chen and Goodman, 1998) in-
stead of Katz. We utilized perplexity as the pri-
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mary measure to evaluate individual posted con-
tent and global community-level trends in lan-
guage used over time.

Summary of Main Findings. Using the metric
of perplexity, we have strong evidence to suggest
that Trump’s use of weapon words has engaged
political discussion in a way that has affected our
communication patterns in a big way. For any pair
of years (2011 vs. 2015, 2013 vs. 2015, etc.) be-
tween the two different elections, there is a mea-
sureable difference in the perplexity of the test set
of 2018 posts. In Figure 1, we can see the im-
mediate impact of Trump weapon words on post
activity. The increase of post frequency including
usage of weapon words supports Lakoff’s theory
– we (i.e. the community) are taking his charged
and targeted linguistic terms and adopting them
into our own speech patterns. Analysis of our test
set using SLMs further demonstrates that politi-
cal discourse has made a shift towards the lan-
guage that Trump uses. Figure 2 shows perplexity,
by post, as an average for SLMs over a full year.
Comparisons demonstrate a noticeable, and con-
sistent, difference between perplexity scores for
each post.

2 Background

2.1 Snapshot Language Models

Tracking linguistic change in online communi-
ties has been performed using bigram Snapshot
Language Models (SLM) as demonstrated by
(Danescu-Niculescu-Mizil et al, 2013). We have
used the same technique and expanded its use
with an emphasis on community level linguistic
change within online political forums. Within
the timeframe specified we have developed a tri-
gram language model using Kneser-Ney smooth-
ing for each month. Previous work has revealed
that linguistic change occurs frequently and user
behavior patterns are so strongly linked that user
lifecycles can be predicted. We wondered what
happens when enough users are impacted by the
same influential event. In such situations, we posit
that entire communities use of language can be
shifted towards language surrounding an event.
The SLMs we generated follow the same frame-
work as (Danescu-Niculescu-Mizil et al, 2013)
where a separate SLMm is generated for every
month (ie. SLMapr15, SLMmay15, etc.).

Our application of SLMs is geared towards
community-level changes and not user-specific be-

havior, so in this sense our use of SLMs is quite
different. Our evaluation of each SLM uses a test
set of 2018 posts. Each post, p, is evaluated by
calculating Perplexity where:

2H(p,SLMm(p)) = 2
− 1

N

∑
logPSLMm(p)

(ti)

where t1,...,tN are tri-grams making up text of
each post, p. A lower value for perplexity in-
dicates a post that is closer in agreement to
SLMm(p). While perplexity is typically used as
a measure of accuracy of a language model, in our
study we are measuring the accuracy in terms of a
specific group of words (i.e. type of post). Thus,
we define perplexity in this case to be a measure
of proximity to our test set.

3 Methods

3.1 Data Source Overview
We wanted the data for our analysis to include a
good representation of the online community and
also have a lot of data to ensure that each SLM
could be adequately trained. Reddit users fit our
needs well as Reddit is an anonymous platform
where people feel free to express themselves with-
out censorship. There are no additional restric-
tions that would make us believe that user activity
would behave differently from the users of inter-
est in the (Danescu-Niculescu-Mizil et al, 2013)
study. In order to capture discussions related to
politics, we filtered the Reddit comment data to
include only the r/politics subreddit. We wanted
to capture discussion surrounding an entire elec-
tion cycle, so we cast a wide net and included the
election year, as well as the year prior to and the
year following each election. We organized data
by month. Table 1 shows the key statistics of our
data for the 2016 Presidential election period from
2015 to 2017. Figure 2 shows the number of posts
in the politics subreddit by month.

From the table we can see that over 40,000 users
have posted more than 50 times. This gives us the
ability to observe user-level characteristics. In ad-
dition, the Reddit data we have access to goes back
to 2005 and also covers a variety of topics. This
is very useful as it allows us to provide two dif-
ferent baselines to compare our SLM data to. We
plan to implement SLMs for the following specific
datasets:

• r/politics, January 2015 - December 2017

• r/politics, January 2011 - December 2013
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Figure 1: Number of Posts including Weapon Words, by year

Figure 2: Perplexity scores of 2018 test set using SLMs, averaged by year for each post in test set. Each
plot shows comparison of scores for two different years.

Total Number of Posts 44,883,364
Number of users 840,870
Users with more than 50 posts 41,066

Table 1: 2016 Presidential Election Reddit Data Summary
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Figure 3: Total number of posts by month in the r/politics subreddit.

3.2 Weapon Words

In order to analyze linguistic change in relation
to Trump Weapon Words, we have identified sev-
eral key phrases,WWi that have been coined or
repeatedly used by Donald Trump during differ-
ent time period of his Presidency and presiden-
tial campaign. The following weapon words were
used, however, we could have easily expanded our
collection of weapon words for this study:

• “fake news”

• “witch hunt”

• “deep state”

We generated a test set which consisted of posts
made in the r/politics subreddit in 2018 which in-
clude any combination of one more of WWi. Ta-
ble 2 shows test for 10 random posts from the
test set. We used the measure of perplexity to
test whether or not posts containing these Weapon
Word were being used more often than those with-
out. From the test set, we generated a Perplex-
ity score for each post for each SLM to see how
closely the SLM resembled the language of the
posts in the test set.

3.3 Community-Level Effects
For each SLMm(p), we calculated the average per-
plexity of posts, pi. We compared these to a base-
line which was the 2012 Election set of SLMs,
testing the hypothesis that 2016 Presidential Elec-
tion era posts would have a decreasing perplexity
and smaller perplexity than the SLM’s generated
during the 2012 Presidential Election.

4 Results and Discussion

Our study shows that there has indeed been a shift
in social communities’ use of language towards
that of the President. Using the test set of posts
from 2018, we have tested the performance of
SLMs for 2016 Election era months against per-
formance of 2012 Election era months. Our expec-
tion based on the frequency of WWi, was that the
strongest differences would be observed in 2017
compared to 2012 Election models. We ran tests
for several different time period and resolutions to
best understand when the shift in linguistic change
happened and how strong it was. In Figure 4, we
can see the 2012 Election behaves as a constant.
Picking back up in 2015, perplexity values are still
very close to where they were during the 2012
Election. It is only a few months later in 2015
when we see a downward trend that continues
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Author Text

Benjanon Franklin No she just mishandled top secret info and covered the evidence up by deystroying...
older than dirt OMG you people are actually off the rails insane. President Trump is not going to...
callahan09 It’s funny because that unlimited data collection from people’s social media usage is...
PresidentBiglyhands Good. Give the Deep State the warning shot they so clearly need. They cross...
renew123 Serious question for the lefties here... with all the big crack down on fake news, ...
Alchemist2121 Nah that’s too overt. more like a fully funded department of MS that focused on...
RainbowDarter They know, but attribute that to defending from the corrupt left and deep state...
EvryMthrF ngThrd ”O Country Where Art Thou?” *Original Motion Picture
fuzeebear Rigged Russia Witch Hunt He keeps extending his clever little nickname for the ...
sluttttt Break out the popcorn, folks! Here’s this weekend’s tweet forecast: Saturday: Huge ...

Table 2: 10 posts from test set: posts from 2018 containing weapon words.

through the 2016 Election Day in November and
then plateaus. This distinction is also presented in
Figures 5 and 6 with a density histogram for each
of the 3 years for each election cycle. The 2012
Election cycle years exhibit virtually no change,
while the 2016 Election cycle shows a downward
shift from year to year.

Tables 4 and 5 contain text for the 5 highest and
lowest scoring posts for SLMNov17.

4.1 Natural Linguistic Change

The original study conducted by (Danescu-
Niculescu-Mizil et al, 2013) revealed a natural
evolution of language used in online discussions.
For our results, we did not attempt to control for
natural linguistic changes in each SLM and how
any such changes within the test set posts might
affect the results. It’s likely that there is a small
bias at work in favor of lower Perplexity scores in
more recent SLMs and the 2016 Election era col-
lection overall. We can, however, be certain that
the proximity of online political discussions has
made a significant shift towards the language iden-
tified by (Lakoff, 2016) as weapon words.

5 Conclusion

Lakoff’s insights were based on intuition and
anecdotal evidence, and he is right. Two things
have happened to online discussions that strongly
support his hypothesis. One, the frequency at
which online communities discuss politics has
risen substantially since Trump began weaponiz-
ing his words beginning with his presidential cam-
paign in 2015. Second, the weapon words used
by the President have become adopted by online
communities, and linguistic change has shifted to-

wards his speech patterns. We see potential for
many other use cases and opportunities to con-
tinue analysis using SLMs to determine with more
precision when online communities are adopting
language. In addition, the presense of bots has
clouded our ability to understand true user behav-
ior. We propose that continued study into this
space include the detection of automated content
and its role in developing linguistic change pat-
terns. Some of the 2016 and 2017 SLMs indicated
that individual posts with the highest proximity
(or lowest perplexity) were generated by bots (see
Table 5). We believe that combining SLM tech-
niques such as we’ve used with state of the art NLP
bot detection methods developed by (Kumar et al.,
2017) would be a powerful step forward in gain-
ing more understanding of our language patterns
in modern communication mediums.

6 Source Code

All project source code and materials are avail-
able at: Linguistic Change in Online Political Dis-
course
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Figure 4: Perplexity scores for each SLM (Y axis = Perplexity, X axis = month in election cycle)

Figure 5: Density plot of histogram for each year surrounding 2012 Presidential Election

Author Text

AutoModerator Hi ‘RejectForce‘, your post ‘This is what fake news looks like‘ has been rem...
AutoModerator Hi ‘AimingWineSnailz‘, your post ‘Fake News, Part 1: Origins and evolution‘ ...
AutoModerator Hi ‘Cotton9‘, your post ‘Dr. Pieczenik: Trump Has Officially Destroyed the D...
AutoModerator Hi ‘timekill05‘, your post ‘Trump Walks Out On 1990 CNN Interview For Being ...
AutoModerator Hi ‘goose7771‘, your post ‘Sean Hannity finds out on-camera that Trump tryin...

Table 3: Posts with Top 5 Perplexity Scores from November 2017 SLM
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Figure 6: Density plot of histogram for each year surrounding 2016 Presidential Election

Author Text

Apostate1123 Bob Mueller nick name odds Liddle Bob Mueller 2-1 Russia Hoax Robert 3...
Qweef *sneakily* Dudes distracting us at every chance he can get RIGHT TO CH...
MrMadcap The important thing to always remember is that: Hillary. Obama. Mueller. ...
TDisacuckfactory LOL DAE GEORGE SOROS CRISIS ACTOR DEEP STATE PLOT FLAT ...
MrsMI1UCAN2 Shh. They speak of *her*, our true deep state overlord, let us recognize ...

Table 4: Posts with Lowest 5 Perplexity Scores from November 2017 SLM


