
Facial Keypoints
Recognition

a W207 Final Project by Harry Xu,
Noah Randolph, and Chet Gutwein

Introduction
● Facial keypoints recognition can be used as a building block in

several areas, such as information security and medical diagnosis
● Large amount of variation due to 3D pose, size, position, viewing

angle, and illumination conditions
● Training and tuning models for keypoint recognition is

computationally demanding due to multiple points to classify, total
features = all image pixels, continuous data in each feature, and
large training set needed

Data, Labels, and Feature Engineering
Training data contained in .csv file, each row containing 30 data labels and a string
containing image data

Labels

● Used 1,000 samples for dev set with 6,049 training samples left

● Inconsistencies in training labels - only 4 of 15 keypoint labels present in
more than 50% of samples

Training Data

● Grayscale image with size of 96 X 96 pixels for a total of 9,216 features

● Pixel values normalized initially by dividing each value by 255.0

● Later used

Blurring & Generating Training Samples
● Removing incomplete training samples: problematic

because we significantly reduce the size of training
data!!!!

● Using Average Replacement: rather than discard,
use the average value of each training sample as a
replacement

● Blurring: applying a gaussian blur to an image can
help model performance

● Generate artificial training samples: with a scarcity of
training data, we attempted to generate additional
training samples

○ Flipped image on y axis
○ Adapted keypoint labels
○ Doubled the size of our training data
○ Slight decrease in model performance,

introduced unwanted bias

Baseline Submission
● Predicted each facial keypoint location, x and

y, to be the average of 96 pixel positions, or
pixel (x = 48, y = 48)

kNN Regression Model
Model RMSE on

Dev
RMSE on
Test

Only complete labels 2.57 3.55

Missing labels filled by average 1.86 3.47

Missing labels filled by average and image
blurred

1.82 3.45

● We used GridSearch to find k=3 to be the optimal
hyperparameter for our model

● The model is using uniform weights and standard
Euclidean distance

● Produces decent results on our Dev data set, but does
not produce as satisfactory results on Test data

Neural Net (MLPRegressor) Model
● We are using a Feed Forward Neural

Network with two hidden layers sized
(1000, 500)

● Input layer of 9216 (number of pixels) and
output layer of 30 (number of x,y
keypoints)

● Our activation function is the Rectified
Linear Unit (ReLu)

● Our learning rate is held constant

● We are using the ‘Adam’s’ Optimizer which
is a form of Stochastic Gradient Descent

Model RMSE on
Dev

RMSE on
Test

Only complete labels 2.59 3.33

Missing labels filled by average 2.55 3.28

Missing labels filled by average and
image blurred

2.27 3.6

Final Outcome
Results:

- RMSE better on dev set for k NN (1.82 vs. 2.27)
- RMSE better on test set for MLPRegressor (3.28 vs. 3.45)

If we had more time:

- Build a more complex neural net with convolutional hidden layers
- Feature engineering: more complex model to predict missing labels based on full sets of labels

than just taking the average

Thank you - Any Questions?

Harry Xu
Slack: @harryxu
E-mail: harryxu@berkeley.edu

Noah Randolph
Slack: @noahrandolph
E-mail: noah_randolph@berkeley.edu

Chet Gutwein
Slack: @cgutwein
E-mail: chet_gutwein@berkeley.edu

