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Introduction
● Facial keypoints recognition can be used as a building block in 

several areas, such as information security and medical diagnosis
● Large amount of variation due to 3D pose, size, position, viewing 

angle, and illumination conditions
● Training and tuning models for keypoint recognition is 

computationally demanding due to multiple points to classify, total 
features = all image pixels, continuous data in each feature, and 
large training set needed 



Data, Labels, and Feature Engineering
Training data contained in .csv file, each row containing 30 data labels and a string 
containing image data

Labels

● Used 1,000 samples for dev set with 6,049 training samples left

● Inconsistencies in training labels - only 4 of 15 keypoint labels present in 
more than 50% of samples

Training Data

● Grayscale image with size of 96 X 96 pixels for a total of 9,216 features

● Pixel values normalized initially by dividing each value by 255.0

● Later used 



Blurring & Generating Training Samples
● Removing incomplete training samples: problematic 

because we significantly reduce the size of training 
data!!!!

● Using Average Replacement: rather than discard, 
use the average value of each training sample as a 
replacement 

● Blurring: applying a gaussian blur to an image can 
help model performance

● Generate artificial training samples: with a scarcity of 
training data, we attempted to generate additional 
training samples

○ Flipped image on y axis
○ Adapted keypoint labels
○ Doubled the size of our training data
○ Slight decrease in model performance, 

introduced unwanted bias



Baseline Submission
● Predicted each facial keypoint location, x and 

y, to be the average of 96 pixel positions, or 
pixel (x = 48, y = 48)



kNN Regression Model
Model RMSE on 

Dev
RMSE on 
Test

Only complete labels 2.57 3.55

Missing labels filled by average 1.86 3.47

Missing labels filled by average and image 
blurred

1.82 3.45

● We used GridSearch to find k=3 to be the optimal 
hyperparameter for our model

● The model is using uniform weights and standard 
Euclidean distance

● Produces decent results on our Dev data set, but does 
not produce as satisfactory results on Test data 



Neural Net (MLPRegressor) Model
● We are using a Feed Forward Neural 

Network with two hidden layers sized 
(1000, 500)

● Input layer of 9216 (number of pixels) and 
output layer of 30 (number of x,y 
keypoints) 

● Our activation function is the Rectified 
Linear Unit (ReLu)

● Our learning rate is held constant

● We are using the ‘Adam’s’ Optimizer which 
is a form of Stochastic Gradient Descent

Model RMSE on 
Dev

RMSE on 
Test

Only complete labels 2.59 3.33

Missing labels filled by average 2.55 3.28

Missing labels filled by average and 
image blurred

2.27 3.6



Final Outcome
Results:

- RMSE better on dev set for k NN (1.82 vs. 2.27)
- RMSE better on test set for MLPRegressor (3.28 vs. 3.45)

If we had more time: 

- Build a more complex neural net with convolutional hidden layers
- Feature engineering: more complex model to predict missing labels  based on full sets of labels 

than just taking the average
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